Conservation of the Requlatory Region and the Genes they

Requlate within a Network

Genes interact with each other in large networks, not simply in linear pathways.
Understanding network structure in molecular biology is crucial for unraveling complex
interactions between genes, proteins, and other biomolecules, shedding light on
requlatory mechanisms, and emergent properties essential for comprehending biological
processes at a systems level. Biological regulatory networks organize molecular
interactions governing gene expression and cellular processes. Biological
requlatory networks are large, multifaceted, and have a broad range in requlatory effects.

Understanding the association between the evolution of the coding sequences of genes
and their requlatory framework within the confines of a network can inform us of large-
scale evolutionary constraint on these nodes. Nodes are genes that have a protein
product, or those that requlate other genes. They regulate other genes by associating
directly or indirectly with their requlatory frameworks.

Genes are modularly regulated - they can be requlated by a combination of multiple
factors. Appropriate gene requlation is achieved by the combinatorial outcome of “unit
operations”. There are a modest number of these individual requlatory factors/operations,
but a large number of combinations of factors that execute these operations to fine-tune
requlatory frameworks.

Nodes with more diverse function/high pleiotropy ought to also have a more diverse
requlatory framework.
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The more a node is connected in the network, the more the gene span is
conserved, and the more fragmented its corresponding requlatory region

Highly connected nodes need more TFBSs in their upstream regulatory regions, so the
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Regulatory Region (RegR) vs. CoDing Sequence (CDS)

Hypothesis

More conserved genes are going to have equally conserved requlatory regions because their

|dentify motifs in upstream requlatory region
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requlatory framework also needs to be constrained to maintain similar function.
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All correlations reported are significant with p < Te-2

CoDing Sequence (CDS) vs. Network

Hypothesis

Highly connected nodes are going to be more conserved in their gene span due to putative

pleiotropy.

upstream regulatory region is going to have more motifs/the MSA will be more conserved.
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Degree Centrality

Eigenvector Centrality

Degree centrality refers to the measure of how connected a node is to other nodes in a network.
A higher degree centrality for a node indicates that it is more connected to other nodes in the network.
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Fragmentation Index is calculated by identifying
the number of indels and normalizing them against
the total length of the alignment.

Average Heterozygosity (genetic variation within an
individual's DNA at specific loci) is calculated by
identifying the distribution of all residues in a single
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Max Core Block Size is the number of contiguous residues that have
Ty perfect identity at the particularly position in the alignment.
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