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Sample Regulatory Network and Upstream Regulatory Region

Identify motifs in upstream regulatory region 
using MEME/XTREME/GLAM2

Future Directions

Results
Network vs. Regulatory Region (RegR) Regulatory Region (RegR) vs. CoDing Sequence (CDS) CoDing Sequence (CDS) vs. Network
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Sequence Identity is calculated by looking at each 
position in the MSA. If the same residue is in the position in 
all sequences, the identity is 1. This is then averaged over the 
length of the entire alignment. 
Larger the sequence identity of an alignment, more 
conserved the alignment was at specific base positions.
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All correlations reported are significant with p ≤ 1e-2

Fragmentation Index is calculated by identifying 
the number of indels and normalizing them against 
the total length of the alignment. 
Larger the fragmentation index, more often the 
individual sequences in the alignment were 
fragmented.

Average Heterozygosity (genetic variation within an 
individual's DNA at specific loci) is calculated by 
identifying the distribution of all residues in a single 
position in the alignment. 
Higher the average heterozygosity, higher the variation in 
the component sequences used to generate the 
alignment. 
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66% 67%
Of all RegR/Network correlations, average gaps in the RegR 
alignment were present in 66% of all positive correlations, and 
gap metrics of the MSA were present in 67% of all correlations. 
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Nodes with higher hub scores have more connections to 
other nodes in the network, indicating their importance as 
central hubs or key connectors within the network structure.
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A higher gap entropy in an MSA 
indicates a greater degree of variability 
or randomness in the distribution of gap 
positions across aligned sequences. 

Degree centrality refers to the measure of how connected a node is to other nodes in a network.   
A higher degree centrality for a node indicates that it is more connected to other nodes in the network.

Eigenvector centrality (xv) is a measure of the importance of a 
node in a network based on its direct connections but also on the 
centrality of its neighbors. 
A higher eigenvector centrality for a node indicates that it is not 
only well-connected but also connected to other nodes that are 
themselves well-connected. 

Some nodes with 
high xv also have 

higher 
heterozygosity

High average gaps in an MSA suggest 
regions of the alignment where 
sequences exhibit substantial variation 
in length due to the presence of 
numerous insertions or deletions (non-
conserved sequence between motifs).
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Analysis for the CDS sequence was run on the entire 
gene span, and not only the protein—coding region
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Base Identity is the number of residues 
in that are perfectly conserved at that 
position in all sequences in the alignment. 
Higher base identity means higher levels 
of conservation.

Max Core Block Size is the number of contiguous residues that have 
perfect identity at the particularly position in the alignment.  
Higher max core block size, higher the contiguous residues that are 
perfectly conserved in the alignment.

Highly connected nodes  are going to be more conserved in their gene span due to putative 
pleiotropy.

Hypothesis
More conserved genes are going to have equally conserved regulatory regions because their 

regulatory framework also needs to be constrained to maintain similar function. 

Hypothesis

Highly connected nodes need more TFBSs in their upstream regulatory regions, so the 
upstream regulatory region is going to have more motifs/the MSA will be more conserved.

Hypothesis

The more a node is connected in the network, the more the gene span is 
conserved, and the more fragmented its corresponding regulatory region 

is.

Conclusion/Takeaways

Genes interact with each other in large networks, not simply in linear pathways. 
Understanding network structure in molecular biology is crucial for unraveling complex 
interactions between genes, proteins, and other biomolecules, shedding light on 
regulatory mechanisms, and emergent properties essential for comprehending biological 
processes at a systems level. Biological regulatory networks organize molecular 
interactions governing gene expression and cellular processes. Biological 
regulatory networks are large, multifaceted, and have a broad range in regulatory effects. 

Understanding the association between the evolution of the coding sequences of genes 
and their regulatory framework within the confines of a network can inform us of large-
scale evolutionary constraint on these nodes. Nodes are genes that have a protein 
product, or those that regulate other genes. They regulate other genes by associating 
directly or indirectly with their regulatory frameworks. 

Genes are modularly regulated — they can be regulated by a combination of multiple 
factors. Appropriate gene regulation is achieved by the combinatorial outcome of “unit 
operations”. There are a modest number of these individual regulatory factors/operations, 
but a large number of combinations of factors that execute these operations to fine-tune 
regulatory frameworks. 

Nodes with more diverse function/high pleiotropy ought to also have a more diverse 
regulatory framework.


